ELECTROMAGNETIC PULSE

An Electromagnetic Pulse (EMP) can be generated by a high altitude nuclear explosion (HEMP) and a Geomagnetic Storm (GMS) is induced by a Coronal Mass Ejections (CMEs) on the sun. Taken together, they are the two most likely threats that can completely devastate a modern society and transform it into a "New" Dark Ages. To understand the full range of consequences and damages associated with the detonation of an EMP device, or a severe GMS, one needs only to look at the current social economic conditions of today's modern society.

The physical and social fabric of the United States, and other developed nations is sustained by a complex and dynamic network of interlocking and interdependent infrastructures whose harmonious functioning enables the myriad actions, transactions, and information flow that undergird the orderly conduct of civil society in this country. The vulnerability of these infrastructures to EMP threats — deliberate, accidental, and acts of nature, is incredibly severe and has the potential to render this nation into a state of devastation, starvation and anarchy.

At Hardened Structures we provide specific hardening designs, fabrications, components, installation and construction services to mitigate the effects of EMP, HEMP, GMS, Blast, Chemical, Biological, Radiological and Nuclear weapons.

Electronics are used to control, communicate, compute, store, manage, and implement nearly every aspect of modern military and civilian systems. When a nuclear explosion occurs at high altitude, the EMP signal it produces will cover the wide geographic region within the line of sight of the detonation. For example, a nuclear explosion at an altitude of 100 kilometers would expose 4 million square kilometers, about 1.5 million square miles, of Earth surface beneath the burst to a range of EMP field intensities. This broad band, high amplitude EMP, when coupled into sensitive electronics, has the capability to produce widespread and long lasting disruption and damage to the critical infrastructures that underpin the fabric of U.S. society. In effect, water will cease running in about 24 hours and food will disappear from the stores within 3 days. Depending on the magnitude of the EMP or GMS event, this condition may persist from 6 months to 5 years.

At EMPEngineering.com we recognize the tremendous dependence of modern society on the electrical power system relative to its vulnerability to an EMP attack and the inherent effects of its long-term, catastrophic consequences. The implicit invitation to take advantage of this vulnerability, when coupled with increasing proliferation of nuclear weapons and their delivery systems, is a serious concern now being addressed by governments and corporations alike. A single EMP attack can seriously degrade or shut down a large part of the electric power grid in the geographic area of EMP exposure effectively instantaneously. There is also a possibility of functional collapse of grids beyond the exposed area, as electrical effects propagate from one region to another.

The time required for full recovery of service would depend on both the disruption and damage to the electrical power infrastructure and to other national infrastructures. Larger affected areas and stronger EMP field strengths will prolong the time to recover. Compounding this disaster would be severe water, food and heating shortages that would certainly accompany an EMP event leading to civil unrest and possibly martial law.

Electrical power is necessary to support critical infrastructures, including supply and distribution of water, food, fuel, communications, transport, financial transactions, emergency services, government services, and all other infrastructures supporting the national economy and welfare. Should significant parts of the electrical power infrastructure be lost for any substantial period of time, the consequences are likely to be catastrophic, and many people may ultimately die for lack of the basic elements necessary to sustain life in dense urban and suburban communities. In fact, such impacts are likely in the event of a prolonged solar event or EMP attack unless practical steps are taken to provide protection for critical elements of the electric system and for rapid restoration of electric power, particularly to essential services.

Making preparations to manage the effects of an EMP attack or GMS event, including understanding what has happened, maintaining situational awareness, having plans in place to recover, challenging and exercising those plans, and reducing vulnerabilities, is critical to reducing the consequences, and thus probability, of attack. At Hardened Structures and EMP Engineering.com we design and implement the appropriate level approach to balance prevention, protection, and recovery to best suit our Client's needs.

However, to set the stage for understanding the potential threat under conditions in which all infrastructures are under simultaneous attack, it is important to realize that the vulnerability of the whole — of all the highly interlocked critical infrastructures may be greater than the sum of the vulnerability of its parts. The whole is a highly complex system of systems whose exceedingly dynamic and coordinated activity is enabled by the growth of technology and where failure within one individual infrastructure may not remain isolated but, instead, induce cascading failures into other infrastructures. Therefore, it is imperative that the Client's particular EMP mitigation designs and recovery plans are tailored to accomplish "complete stand-alone" operational status during a EMP or GMS event.

The scenarios envisioned by an EMP attack or GMS event involve potential failures distributed across a wide geographical extent. These include multiple combinations of node failures, a condition that generally is outside the parameter space of validation of extant system models and poses a severe challenge to predicting the subsequent evolution of the infrastructure response. The separation of these infrastructures into different domains tends to obscure the real interdependencies that sustain the effectiveness and daily operation of each one.

Experience demonstrates that it is sometimes easy to overlook the less obvious roles that such interdependencies and interactions may play, and coupling pathways may be easily overlooked. As an example, many of the recovery procedures developed by organizations to deal with emergencies involve the implicit assumption that transportation is available and people will be put on airplanes and go somewhere to diagnose and repair something. In the immediate aftermath of 9/11, all civilian airplanes were grounded. In 1991, a single point failure inside the telecommunications system, the accidental severing of a single fiber-optic cable in the New York City region, not only blocked 60 percent of all calls into and out of New York, but also disabled all air traffic control functions from Washington, D.C., to Boston — the busiest flight corridor in the Nation — and crippled the operations of the New York Mercantile Exchange. These key interdependencies were always there, but they were not recognized as warranting advanced contingency planning, situational awareness in degraded conditions, and operational workarounds. At Hardened Structures and EMPengineering.com we seek to identify all interdependencies and interactions between our Client's internal systems and all external Points of Entry. It is only by identifying, shielding and protecting all entry points and infiltrations paths can a suitable EMP mitigation program be implemented.

 


607 Lynnhaven Parkway 
Virginia Beach, VA 23452


Toll Free: +1 (877) 486-0084